Squares and primes

Learn and revise

Make sure you know what square numbers and prime numbers are.

Square numbers

The numbers $1,4,9$ and 16 are examples of square numbers.
Square numbers are found when two identical whole numbers are multiplied together, e.g.

3 squared = 9
4 squared $=16$
$3^{2}=9$
$4^{2}=16$

Prime numbers

If a number only has two factors, itself and 1 , then it is a prime number.
For example, 17 is a prime number because it can only be divided exactly by 1 and 17 .

The number 1 is not a prime number because it only has one factor - itself.

Practice activities

1. Answer these.
a) $3 \times 3=3^{2}=$ \qquad
b) $10 \times 10=10^{2}=$ \qquad
c) $4 \times 4=4^{2}=$ \qquad
d) $6 \times 6=6^{2}=$ \qquad
e) 2^{2}
$=$ \qquad f) 12^{2}
$=$ \qquad
g) 5^{2}
$=$ \qquad h) 7^{2}
$=$ \qquad
i) 8^{2}
$=$ \qquad
k) 9^{2}
$=$
k) $9^{2}=$
j) 1^{2}
I) 11^{2}
\qquad
$=$
2. Investigate the number of factors for each of the square numbers in practice activity 1.

Complete this sentence:
Square numbers always have an \qquad number of factors.

Squares and primes

3. Eratosthenes was a Greek mathematician who lived from 275 BC to 195 BC . He discovered a method of finding prime numbers of less than 100.

To use his method, follow the stages under the grid below:

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

a) On this number grid, cross out numbers using different colours:

- Cross out 1.
- Cross out all the multiples of 2 , but not 2 .
- Cross out all the multiples of 3 , but not 3 .
- Cross out all the multiples of 5 , but not 5 .
- Cross out all the multiples of 7 , but not 7 .
b) Write down all the numbers that you have not crossed out. If you have done it correctly, this will be a list of all the prime numbers to 100 .
\qquad
\qquad
\qquad
c) What do you notice about the factors of each of the numbers you have listed in part b)?

