Squares and primes

Learn and revise

Make sure you know what square numbers and prime numbers are.

Square numbers

The numbers 1, 4, 9 and 16 are examples of **square numbers**. Square numbers are found when two identical whole numbers are multiplied together, e.g.

- 3 squared = 9
- 4 squared = 16
- $3^2 = 9$
- $4^2 = 16$

Prime numbers

If a number only has two factors, itself and 1, then it is a **prime number**. For example, 17 is a prime number because it can only be divided exactly by 1 and 17.

The number 1 is not a prime number because it only has one factor – itself.

Practice activities

1. Answer these.

a)	$3 \times 3 = 3^{-1}$	2 =	b)	$10 \times 10 = 10$	2 =
c)	$4 \times 4 = 4$	² =	d)	$6 \times 6 = 6^2$	=
e)	2 ²	=	f)	12 ²	=
g)	5 ²	=	h)	7 ²	=
i)	8 ²	=	j)	1 ²	=
k)	9 ²	=	I)	11 ²	=

2. Investigate the number of factors for each of the square numbers in practice activity 1.

Complete this sentence:

Square numbers always have an ______ number of factors.

3. Eratosthenes was a Greek mathematician who lived from 275 BC to 195 BC. He discovered a method of finding prime numbers of less than 100.

1	2	3	4	5	6	7	8	9	10
11	12	13	14	15	16	17	18	19	20
21	22	23	24	25	26	27	28	29	30
31	32	33	34	35	36	37	38	39	40
41	42	43	44	45	46	47	48	49	50
51	52	53	54	55	56	57	58	59	60
61	62	63	64	65	66	67	68	69	70
71	72	73	74	75	76	77	78	79	80
81	82	83	84	85	86	87	88	89	90
91	92	93	94	95	96	97	98	99	100

To use his method, follow the stages under the grid below:

a) On this number grid, cross out numbers using different colours:

- Cross out 1.
- Cross out all the multiples of 2, but not 2.
- Cross out all the multiples of 3, but not 3.
- Cross out all the multiples of 5, but not 5.
- Cross out all the multiples of 7, but not 7.
- **b)** Write down all the numbers that you have not crossed out. If you have done it correctly, this will be a list of all the prime numbers to 100.

c) What do you notice about the factors of each of the numbers you have listed in part **b**)?